Balancing the Earth's Radiation Budget

Lou Smith

Annual Mean Global Average Fluxes

- Ingoing Flux: 1365/4 = 341.3 W m-2
- Outgoing Flux:
 - Reflected Shortwave 97.8
 - Outgoing Longwave 237.1

»

- Net Flux:6.4
- More than we expect for interannual variation!

CERES SET November 2007 Victoria, BC

Global Imbalance

The Imbalance is due to the accumulation of errors in measurement and data product generation.

Error Sources for Net Radiation Budget (Strawman)

- Gain of Total Channel
- Gain of Shortwave Channel
- LW Spectral Response of Total Channel
- SW Spectral Response of Total Channel
- Spectral Response of Shortwave Channel
- Limb—darkening Function
- BRDF
- Temporal Interpolation of OLR
- Temporal Interpolation of Albedo
- Solar Constant

Effects of Errors on Budget

 Errors are Small, therefore assume Effects are Linear:

$$\Sigma A_i X_i = -\epsilon_{RN}$$

or $a^t x = -\epsilon_{RN}$

- Here A_i is Sensitivity of Net Radiation to parameter X_i

Consider a 2-Parameter System:

CERES SET November 2007 Victoria, BC

Consider Probability of X_1X_2 Pair:

Probability Distribution of X

- Assume X have zero mean
- Assume X Normally Distributed
- $P(x) = M \exp(-x^t Cx)$

Where C = Covariance Matrix

Most Likely Solution to Balance Energy: Equations

Most Likely Solution is given by minimizing -x^tCx

subject to Constraint $a^tx = -\varepsilon$

RN

Thus Minimize

$$\Omega = -x^tCx + \lambda a^tx$$

where λ = Lagrangian Multiplier
Victoria, BC

Where November 2007

Victoria, BC

Most Likely Solution to Balance Energy:

$$x = -\lambda Ca$$

Where

$$\lambda = (a^t Ca)^{-1} \varepsilon_{RN}$$

Most Likely Solution to Balance Energy

victoria, DC

Input for Balance $_{\sigma}$ Strawman

•	Gain Total Ch., %	0.005	220.
•	Gain Shortwave Ch.	0	.005
	96.		
•	LW Spec. Total Ch.	0.010	96.
•	SW Spec. Total Ch.	0.005	220.
•	Spect. Resp. SW Ch.	0.005	96.
•	Limb-darkening	0.005	240.
•	BRDF	0.020	96.
•	Temp. Interp. OLR	0.005	240.
•	Temp. Interp. Albedo	0.005	96.
•	Solar Constanteres SET, No Windows	napo 7 1	.0 .25

Effect of 1-sigma Change of Each Parameter

Most Likely Adjustments to Balance Budget: Strawman Only

Computation of Meridional Energy Flux:

Application of Method

- To get meridional flux, integrate net radiative flux starting at Pole.
- Divide Flux by length of Zone to get Flux Density.
- Computation assumes ZERO Annual Mean Global Average Net Radiative Flux.

Annual Mean Meridional Energy Flux

Blue lines: Original data

Red lines: Data Adjusted for Likely Errors

CERES SET November 2007 Victoria, BC

Annual Mean Meridional Energy Flux Density

Blue lines: Original data

Red lines: Data Adjusted for Likely

Errors CERES SET November 2007 Victoria, BC

Conclusions

- An Algorithm has been Developed for Adjusting Parameters in Data Production for Balancing the Radiation Budget.
- Requires Good Error Input for Valid Results. (Garbage in/Garbage out)
- We need to develop good input for this.